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Our present lack of confidence in PSI issues

primarily arises from the poor diagnosis
of PSI effects

e Most of the controlling PSI physics 1s in hand or 1n a
“mature” research stage

Physical sputtering, chemical sputtering

Plasma edge sheath theory

Atomic physics (1onization, etc.)

Notable exception: L particle transport in edge plasmas.

e By the same token, edge plasma diagnosis 1s mature.

e However we have essentially no direct diagnosis of how &
when plasma-facing surfaces are being modified by the
plasma.
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The PSI diagnostic challenge

e The plasma edge 1s dominated by its own self-consistent
recycling pattern of fuel and impurities

» Easily implemented plasma diagnosis cannot inform us about the
net surface effects (H retention, erosion, etc.)

e The lack of direct surface diagnosis cripples our ability to
understand the net effects of PSI.

e  We have largely relied on surface “archeology” to inform us about
surface modifications. This is unacceptable; the equivalent of

basing ITER burn predictions on one-year integrated neutron
fluence from JET!!)

e Dedicated ex-situ PSI experiments (e.g. DIMES) very expensive to
implement (run-time) and covers << 1% of wall surfaces.

e The challenge 1s to develop reliable in-situ surface
diagnostic techniques that can operate in real-time and be
placed in many locations.
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In-situ PSI diagnosis topics
1. Erosion & deposition using quartz crystal microbalances

2. DIONISOS: Accelerator-based 1on beam surface analysis
experiment being developed at UW-Madison

3. Radio-1sotope alpha emission for remote, 1n-situ “ion beam
analysis” 1n confinement experiments.
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QMB: Quartz crystal microbalances

e  Measures net mass change on surface coating of a crystal by changed
resonance frequency.

e Advantages:
» Extremely sensitive: can measure ~mono-layer net changes in surface
» Large dynamic range: 0.1-> 1000 nm
» Can measure both deposition and erosion of a pre-deposited film.
» Commercially available technology.

e Drawbacks:

» No element discrimination.

» Cannot tolerate any significant heat flux: small thermal mass.
» Highly temperature / environment sensitive

»  Limited absolute range: ~ 1 micron << expected deposit layers.
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QMB: Quartz crystal microbalances

e Implementation needs:

e Special design for in-vessel electronics (ceramic based) to tolerate
high baking temperatures (~ 300 C)

. Present status.

e  QMB successfully implemented in JET divertor...clearly
demonstrating need for real-time PSI diagnosis.

e UW-Madison, MIT and GA now collaborating on
implementation of QMBs in Alcator C-Mod (Mo/B) and DIII-D
(C) tokamaks.

e Summary: Primarily due to their intolerance to heat flux, QMBs are
relegated to measuring erosion/redeposition in “hidden” areas (baffles,
main-wall ports, behind tiles, etc.). Going into new DIII-D lower

divertor 1in tile gaps.
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Ion Beam Analysis of Surfaces

e Interaction of ~MeV 1ons with surface atoms is accurately described

from well-known physics

*  Rutherford elastic scattering (M, ..M, qicciite)

*  Forward elastic recotl (M, (<M. :cciite)

e Inelastic nuclear reactions (all reaction o known)

e Exploit this understanding to diagnose near-surface (~1-10 microns)
properties of materials.

e Advantages:

» - Great flexibility: element/isotope sensitivity, erosion/deposition/H
retention available in single diagnostic.

»  Measurement accuracy over appropriate depth range for PSI.
» - Proven application in fusion PSI (see examples from DiIMES)
» Simple solid-state detectors for scattered charged particles

e Drawbacks:
» Need ~MeV energy ions
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DIMES examples of
Ion Beam Analysis of Surfaces
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DIMES examples of
Ion Beam Analysis of Surfaces

» Carbon erosion/deposition is determined by Solid state
the change in depth of an implanted silicon detector
marker measured by 2 MeV helium
Rutherford backscattering (RBS).
Detection limit ~ £ 10 nm. MeV 4He* *He* H*

Si marker
32? nm

v

Near-surface transport
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Tungsten

» Metal erosion is determined fromthe
change in thickness of thin metal films

measured by RBS (W, V). DIMES
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DIONISOS:
Dynamics of IONic Implantation & Sputtering On Surfaces

* A new experimental facility being constructed at UW-Madison.

*  Goal: Accurately measure the real-time response of the PFC
material surface to plasma bombardment using in-situ high-energy
ion beam analysis.

 Design philosophy:
 Exploition beam analysis (IBA) techniques
e  Mature analysis tool widely used in R&D.

e Vastly different ion energies (30 eV vs. > 1 MeV) allow for
simultaneous surface interaction with little interference.

e Use previously developed axisymmetric plasma sources

»  Helicon: Steady-state plasma /w good density control.
e  Plasma gun: high density/flux pulsed plasma source.
Initially focus on fusion experiments, but generic PSI tool.
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Principal component of DIONISOS is now operational at
UW-Madison: 1.7 MV tandem ion accelerator

MODEL 55DH-4 PELLETRON ACCELERATOR

» Features:
— Dual sources (sputtering and RF plasma), > 100 beam species available.
— High energy (< 10 MeV for higher Z beams)

— High current beamlines (> 0.1 mA) for implantation and irradiation.
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DIONISOS Experiment Setup
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DIONTSOS Experiment Setup

MeV lIon beam
In-situ implantation &
surface diagnosis
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Three proposed areas of study for DIONISOS

e Measurement and modeling of near-surface cross-field ion
transport

e  Determine controlling parameters for the magnitude and locations of
net erosion / redeposition of PFC relevant to fusion (C, W, Mo)

e The dynamic release of fuel and impurity particles from surfaces
exposed to transient, high-density plasmas.

e The dynamics of hydrogenic / tritium fuel trapping in plasma-
deposited films, for single and multiple species materials.
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Plasma sources for DIONISOS

e Helicon plasma source (collaboration with N. Hershkowitz)
 Steady-state ionizing plasma
* Solenoid field convenient linear control of plasma density
e H,D, Ne, Ar

* Plasma gun (collaboration with G. Fiksel, C. Forest)
* Developed for helicity injection on MST (Fiksel et al).
e  Pulsed (~1-10 ms) H/D plasmas with ~60 s rep rate.
e ~100% ionization, T ~20 eV high density (~10%’ m)

e ~100 MW/m? ( 10 MJ/m?/s'/?) per 100 V bias approaches
ablation/melt limits.

Capable of current densities ~ kA / cm?
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Ion beam surface analysis tools are
operational on DIONISOS
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- Carbon-13 detection with
~2 nm depth resolution for
DIII-D experiment.
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Schematic for IBA diagnosis of high-Z PFC materials

low-Z substrate

(e.g.Si)

. RBS measures net
erosion rate of high-

Gamma-ray (1°N on H)
Z film to ~ 5 nm.
. Forward recoil
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Schematic for IBA diagnosis of low-Z PFC materials

17 MeV Nuclear reaction Forward /
proton (3He beam on D) recoiled H/D
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RBS measures net
erosion rate of bulk
material by changes
in high-Z marker
previously implanted
with ion beam.

ERD and NRA
provide real-time
hydrogenic
concentrations and
diffusion in deposited
films
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Schematic for IBA diagnosis of H dynamics in PFC
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Remote IBA using radio-isotope alpha emitters

While IBA is the tool of choice for surface diagnosis, how can we
provide real-time measurements in a confinement device where we
have no access with ion beam?

Produce an ~mono-energetic alpha ion “beam” using natural alpha
emitters

— Present focus on Po-210 (138 day half-life, E,;,,,,=5.4 MeV
— Balances need for alpha flux vs. diagnostic lifetime.
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Schematic of Alpha Surface Analyzers (ASA) design
for real-time PSI diagnosis in confinement devices

a) Side view « Exploit intrinsic magnetic field

to rotate surface in/out of
contact with main PFC surface.

o
— Large thermal mass and contact
allow for surfaces in high heat flux
areas.
h rce — Controls exposure duration of
surface in each discharge.
ERD DETECTOR RES DETECTOR In analysis position, the alpha

scattering is detected by s.s.
detectors for

F"Ian view — RBS: net erosion/deposition and
surface stochiometry

ERD DETECTOR RBS DETECTOR — ERD: Hydrogenic retention over ~ 5
microns.
Po-210 source will allow for
surface diagnosis between
each shot (~10 minute

acquisition time).

Tile surface

Alpha source
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First tests of Alpha Surface Analyzers (ASA) design
are being carried out for Alcator C-Mod

Example spectra

Original films
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Multi-layer B/Mo
films allow for
accurate
measurements of
net erosion, net
deposition and
mixed-material
analysis in C-Mod.

Other R&D

— Po-210
radiochemistry
for film
deposition.

— Detector
geometry
optimization.




